Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available March 1, 2026
- 
            Background Existing fire spread models focus exclusively on wildland or urban fire simulation. Aims This study aims at an offline coupling of two fire spread models to enable a continuous simulation of a wildfire incident transitioning from wildland into wildland–urban interface (WUI) communities, evaluate the effects of wind input on simulation results and study the influence of building types on fire spread patterns. Methods The selected models are WRF-Fire, a wildland fire behaviour simulation platform, and SWUIFT, a model for fire spread inside the WUI. The 2021 Marshall Fire serves as the case study. A map of the fire’s timeline and location is generated using public information. Three simulation scenarios are analysed to study the effects of wind input resolution and building type on the predicted fire spread and damage. Key results The most accurate results are obtained using a high-resolution wind input and when incorporating different building types. Conclusions The offline coupling of models provides a reliable solution for fire spread simulation. Fire-resistant buildings likely helped limit community fire spread during the Marshall Fire. Implications The research is a first step toward developing simulation capabilities to predict the spread of wildfires within the wildland, WUI and urban environments.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Abstract. Following the destructive Lahaina Fire in Hawaii, our team has modeled the wind and fire spread processes to understand the drivers of this devastating event. The results are in good agreement with observations recorded during the event. Extreme winds with high variability, a fire ignition close to the community, and construction characteristics led to continued fire spread in multiple directions. Our results suggest that available modeling capabilities can provide vital information to guide decision-making and emergency response management during wildfire events.more » « less
- 
            The Role of Fuel Characteristics and Heat Release Formulations in Coupled Fire-Atmosphere SimulationIn this study, we focus on the effects of fuel bed representation and fire heat and smoke distribution in a coupled fire-atmosphere simulation platform for two landscape-scale fires: the 2018 Camp Fire and the 2021 Caldor Fire. The fuel bed representation in the coupled fire-atmosphere simulation platform WRF-Fire currently includes only surface fuels. Thus, we enhance the model by adding canopy fuel characteristics and heat release, for which a method to calculate the heat generated from canopy fuel consumption is developed and implemented in WRF-Fire. Furthermore, the current WRF-Fire heat and smoke distribution in the atmosphere is replaced with a heat-conserving Truncated Gaussian (TG) function and its effects are evaluated. The simulated fire perimeters of case studies are validated against semi-continuous, high-resolution fire perimeters derived from NEXRAD radar observations. Furthermore, simulated plumes of the two fire cases are compared to NEXRAD radar reflectivity observations, followed by buoyancy analysis using simulated temperature and vertical velocity fields. The results show that while the improved fuel bed and the TG heat release scheme have small effects on the simulated fire perimeters of the wind-driven Camp Fire, they affect the propagation direction of the plume-driven Caldor Fire, leading to better-matching fire perimeters with the observations. However, the improved fuel bed representation, together with the TG heat smoke release scheme, leads to a more realistic plume structure in comparison to the observations in both fires. The buoyancy analysis also depicts more realistic fire-induced temperature anomalies and atmospheric circulation when the fuel bed is improved.more » « less
- 
            Background Accurate simulation of wildfires can benefit pre-ignition mitigation and preparedness, and post-ignition emergency response management. Aims We evaluated the performance of Weather Research and Forecast-Fire (WRF-Fire), a coupled fire-atmosphere wildland fire simulation platform, in simulating a large historic fire (2018 Camp Fire). Methods A baseline model based on a setup typically used for WRF-Fire operational applications is utilised to simulate Camp Fire. Simulation results are compared to high-temporal-resolution fire perimeters derived from NEXRAD observations. The sensitivity of the model to a series of modelling parameters and assumptions governing the simulated wind field are then investigated. Results of WRF-Fire for Camp Fire are compared to FARSITE. Key results Baseline case shows non-negligible discrepancies between the simulated fire and the observations on rate of spread (ROS) and spread direction. Sensitivity analysis results show that refining the atmospheric grid of Camp Fire’s complex terrain improves fire prediction capabilities. Conclusions Sensitivity studies show the importance of refined atmosphere modelling for wildland fire simulation using WRF-Fire in complex terrains. Compared to FARSITE, WRF-Fire agrees better with the observations in terms of fire propagation rate and direction. Implications The findings suggest the need for further investigation of other possible sources of wildfire modelling uncertainties and errors.more » « less
- 
            Abstract Coupled fire‐atmosphere models often struggle to simulate important fire processes like fire generated flows, deep flaming fronts, extreme updrafts, and stratospheric smoke injection during large wildfires. This study uses the coupled fire‐atmosphere model, WRF‐Fire, to examine the sensitivities of some of these phenomena to the modeled total fuel load and its consumption. Specifically, the 2020 Bear Fire and 2021 Caldor Fire in California's Sierra Nevada are simulated using three fuel loading scenarios (1X, 4X, and 8X LANDFIRE derived surface fuel), while controlling the fire rate of spread using observations. This approach helps isolate the fuel loading and consumption needed to produce fire‐generated winds and plume rise comparable to radar observations of these events. Increasing fuel loads and corresponding fire residence time in WRF‐Fire leads to deep plumes in excess of 10 km, strong vertical velocities of 40–45 m s−1, and combustion fronts several kilometers in width (in the along wind direction). These results indicate that LANDFIRE‐based surface fuel loads in WRF‐Fire likely under‐represent fuel loading, having significant implications for simulating landscape‐scale wildfire processes, associated impacts on spread, and fire‐atmosphere feedbacks.more » « less
- 
            Abstract On 30 December 2021, the Marshall Fire devastated the Boulder, Colorado region. The fire initiated in fine fuels in open space just southeast of Boulder and spread rapidly due to the strong, downslope winds that penetrated into the Boulder Foothills. Despite the increasing occurrence of wildland‐urban interface (WUI) disasters, many questions remain about how fires progress through vegetation and the built environment. To help answer these questions for the Marshall Fire, we use a coupled fire‐atmosphere model and Doppler on Wheels (DOW) observations to study the fire's progression as well as examine the physical drivers of its spread. Evaluation of the model using the DOW suggests that the model is able to capture general characteristics of the flow field; however, it does not produce as robust of a hydraulic jump as the one observed. Our results highlight limitations of the model that should be addressed for successful WUI simulations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
